Last Engineering Run

for the NPDGamma Experiment

$$\overrightarrow{n} + p \rightarrow d + \gamma$$

Request 20011538

April 19, 2001

NPDGamma Experimental Setup

$$d\omega/d\Omega = \frac{1}{4\pi}(1 + A_{\gamma}\cos\theta_{s,\gamma})$$

NPDGamma is an approved & funded (\$3.5M) experiment

NPDGamma: $\overrightarrow{n} + p \rightarrow d + \gamma$

Measure parity-violating asymmetry A_{γ} in capture of polarized cold n by para-H₂

Expected asymmetry $\approx 5 \times 10^{-8}$

target experimental error: 0.5×10^{-8}

 A_{γ} is a clean measurement of H^1_{π} , the largest weak nucleon-nucleon coupling, a fundamental quantity in low-energy QCD and weak interaction physics

NPDGamma building FP12 to be ready for: commissioning run Fall 2002 production data taking 2003

2001 (Last) Engineering Run on FP11A will study the following:

- DAQ & detector improvements to demonstrate design noise levels in situ
- Improvements in ³He neutron spin filter
- New fission chamber flux monitor
- Moderator brightness
- Beam intensity fluctuations
- Detector alignment scheme

Fall 2000 Test Run successfully tested 1/10th scale apparatus, made physics measurements of PV neutron capture (Cl, La, Cd)

NPDGamma Fall 2000 Test Run FP11A

- ullet measured n flux to benchmark Monte Carlo
- ullet verified n intensity fluctuations to be small
- polarized a neutron beam with a 3 He spin filter (thickness 6 atm·cm, $P \approx 26.5\%$)
- measured RF spin flipper efficiency (> 95%)
 vs. energy and position
- used transmission back monitor (³He/H₂) to observe beam intensity and measure RFSF characteristics
- measured parity-violating neutron capture asymmetries in Cl, La, Cd, to $\pm 2.5 \times 10^{-6}$ (stat.), $\pm \text{few} \times 10^{-7}$ (syst.) in eight hours data taking per target, using four CsI(Tl) current mode γ detectors and 3" vacuum photodiodes, and VME-based DAQ system

Neutron Flux Measurement (FP11A, Fall 2000)

Measured the flux by collimating the beam and counting with a small detector on a movable stage

Compare measured flux to predicted flux for a decoupled LH_2 moderator, using a Monte Carlo to calculate neutron guide transport and collimation effects for FP11A

(the moderator brightness prediction is a LAHET calculation by LANSCE)

Excellent agreement ~ 20%

 \longrightarrow FP12 flux will be as assumed for NPDGamma, and have a demonstrated method to measure it

NPDGamma Fall 2000 Test Run Setup

³He Spin Filter

Double cell:

warm side for optical pumping of Rb vapor, cold side for polarizing neutrons

 3 He polarization of 26.5% \Longrightarrow n polarization of 30-70% for 2-10 meV

3 He system \longrightarrow polarized neutron beam

Transmission & polarization depend on neutron energy in a well-understood way

Radio Frequency Spin Flipper

Spin flipper efficiency versus position very good (>95% on axis)

CsI(TI) and Photodiode γ Detectors 48 of these detectors will be used in the full experiment

Parity-violating up/down asymmetry in Cl

(also measured A_{UD} & A_{LR} on Cd and La)

correction factors: 1/<neutron polarization> = -2.56 detector $1/\langle \cos \theta \rangle = 1.11$

Physics asymmetries: U/D = (-23.6 \pm 6.0) \times 10⁻⁶ $L/R = (-3.4 \pm 5.9) \times 10^{-6}$

Last Engineering Run 2001 Goals FP11A

Verify DAQ/detector noise improvements
 Noisy power supplies, ground loop problems in previous test run-NPDGamma needs orders of magnitude better

Have a new RFSF power amplifier, new DC/DC converter design for photodiode preamplifiers—should see significant improvement

- Test larger ³He system(s)
 Larger cell-NIST, valved cell design-UM
- Test fission flux monitor
 New current mode ²³⁵U fission chamber
- Measure moderator brightness
 Tightly collimate beam to eliminate neutrons
 reflected from the guide walls
- Remeasure intensity fluctuations
 Better toroid pickoff & instrumentation
- Test detector alignment scheme

²³⁵U Fission Monitor

Moderator Brightness Measurement

Collimate the beam to eliminate neutrons reflected by the guide

Use a small detector to image the moderator directly

2001 Request for Lujan Center FP11A:

5 days setup

14 days beam

Schedule for Last Engineering Run

days	task
5	Setup
3	³ He system tests
5	Noise/background studies
2	Intensity fluctuation studies
2	Moderator brightness measurement
1	Fission monitor checkout
1	Test alignment scheme